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1 Motivation

Today’s Internet services are commonly built over
TCP [5], the standard Internet connection-oriented reliable
transport protocol. The endpoint naming scheme of TCP,
based on network layer (IP) addresses, creates an implicit
binding between a service and the IP address of a server
providing it, throughout the lifetime of a client connection.
This makes a TCP client prone to all adverse conditions
that may affect the server endpoint or the internetwork in
between, after the connection is established: congestion or
failure in the network, server overloaded, failed or under
DoS attack. Studies that quantify the effects of network sta-
bility and route availability [4, 2] demonstrate that connec-
tivity failures can significantly impact Internet services. As
a result, although highly available servers can be deployed,
sustaining continuous service remains a problem.

Service continuity can be defined as the uninterrupted de-
livery of a service, from an end user’s perspective. The
TCP’s ability to support it is limited by its error recovery
scheme based on retransmissions to the same server end-
point of the connection (bound to a specific IP address). In
practice, the end user might be more interested in receiving
continuous service rather than statically binding to a given
server. As server identity becomes less important than the
service, it is desirable for a client to switch servers during a
service session, e.g., if a server cannot sustain the service.

We propose the cooperative service model, in which a
pool of similar servers, possibly geographically distributed
across the Internet, cooperate in sustaining a service by mi-
gration of client connections within the pool. The control
traffic between servers, needed to support migrated connec-
tions, can be carried either over the Internet or over a pri-
vate network. From client’s viewpoint, at any point during
the lifetime of its service session, the remote endpoint of its
connection may transparently migrate between servers.
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2 Migratory TCP (M-TCP)

To enable the cooperative service model for service con-
tinuity we have designed Migratory TCP (M-TCP) [10, 8],
a reliable connection-oriented transport layer protocol that
supports efficient migration of live connections. The pro-
tocol enables stateful servers to seamlessly resume service
on migrated connections by transferring an application-
controlled amount of specific state. Although fine-grained
connection migration solutions have been proposed before
by exploiting features of application-level protocols like
HTTP [7, 11], to our best knowledge M-TCP is the first
solution that provides generic migration support through a
TCP-compatible transport protocol.

The M-TCP design assumes that the state of the server
application can be logically split among connections by
defining fine-grained state associated with each connection.

The M-TCP service interface can be best described as
a contract between the server application and the trans-
port protocol. According to this contract, the applica-
tion must execute the following actions: (i) export a state
snapshot at the old server, when it is consistent with data
sent/received on the connection; (ii) import the last state
snapshot at the new server after migration, to resume ser-
vice to client. In exchange, the protocol: (i) transfers the
per-connection state to the new server and (ii) synchronizes
the per-connection application state with the protocol state.

The migration mechanism of M-TCP (Fig. 1) ensures
that the new server resumes service while preserving the
exactly-once delivery semantics across migration, without
freezing or otherwise disrupting the traffic on the connec-
tion. The client application does not need to change.

A client contacts the service through a connection C';4 to
a preferred server S1. At connection setup, S supplies the
addresses of its cooperating servers, along with migration
certificates. The client-side M-TCP initiates migration of
C;q by opening a new connection to an alternate server So,
sending the migration certificate in a special option. (Fig.
1 (a)). To reincarnate C';4 at Sy, M-TCP transfers associ-
ated state (protocol state and the last snapshot) from S.
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Figure 1. Migration mechanism in M-TCP. Connec-
tion Cyq, initially established by client C with server
S1, migrates to alternate server Ss.

Depending on the implementation, the state transfer can be
either (i) lazy (on-demand), i.e., it occurs at the time migra-
tion is initiated, or (ii) eager, i.e., it occurs in anticipation of
migration, e.g., when a new snapshot is taken. Fig. 1 shows
the lazy transfer version: S» sends a request (b) to Sy and
receives the state (c). If the migrating endpoint is reinstated
successfully at So, then C' and S3 complete the handshake,
which ends the migration (d).

Upon accepting the migrated connection, the server
application at S» imports the state snapshot. It then re-
sumes service using the snapshot as a restart point, and per-
forms execution replay for a log-based recovery [3] sup-
ported by the protocol. The execution replay restores the
state of the service at the new server and synchronizes it
with the protocol state. To support the replay, M-TCP logs
and transfers from S, data received and acknowledged since
the last snapshot. It also transfers unacknowledged data sent
before the last snapshot, for retransmission from S'5.

3 Implementation and Applications

We have implemented M-TCP in FreeBSD as an ex-
tension to the TCP/IP stack, compatible and inter-operable
with the standard TCP [8]. M-TCP is decoupled from and
can work with various migration policies [10].

We identify two classes of services that can benefit from
M-TCP: (i) Applications that use long-lived connections,
e.g., multimedia streaming services, applications in the In-
ternet core [6], etc.; (ii) Critical applications from which
end users expect both correctness and good response time,
e.g., Internet banking, e-commerce, etc.

To demonstrate the potential of M-TCP in providing ser-
vice continuity, we have implemented and evaluated two
applications. The first one is a synthetic (generic) media

streaming server, for which we use M-TCP in conjunction
with a migration policy based on estimated inbound data
rate. Migration is triggered when the throughput perceived
on the client side falls under a fraction of the maximum
observed. We show that, for the same profile of perfor-
mance degradation at a server, M-TCP can sustain effective
throughput close to the average server profile by migrating
the connection between servers.

The second application is remote access over the Inter-
net to a transactional database server. We have augmented a
PostgreSQL [1] database back-end with support for migra-
tory front-end contexts and used M-TCP between clients
and front-end hosts. The resulting system allows a client
to start a sequence of transactions with one front-end, then
migrate and continue the execution on other front-ends if
necessary. The system ensures that ACID semantics are
preserved and that the execution is deterministic across mi-
gration. The design and implementation are described in
detail in the extended version of the paper [9].

We plan to develop application-specific migration poli-
cies in the future. A software distribution of M-TCP will be
available soon. More details about M-TCP can be found at
our site: http://discolab.rutgers.edu/mtcp.
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