
SockMi: a solution for migrating TCP/IP connections

Massimo Bernaschi
IAC-CNR,

V.le del Policlinico, 137
00161 Rome, Italy

Francesco Casadei
Quadrics Ltd

Via Veneto 183,
00187 Rome, Italy

Paolo Tassotti
Universit̀a “La Sapienza”,

Via Salaria, 113,
00198 Rome, Italy

Abstract

SockMi is a solution for the migration of TCP/IP con-
nections between Linux systems. Only the migrating peer of
the connection needs to reside on a Linux system. The mi-
gration is completely transparent to the other peer that can
reside on a system running any operating system.
Our solution does not require changes to existing Linux ker-
nel data structures and algorithms and can be activated in
any phase of the connection. Both 2.4 and 2.6 versions of
the Linux kernel are supported.

1. Introduction

Migration of a TCP/IP connection means to replace
(at least) one of the peers with another process that can
be on the same or on a different system. There are a
number of situations in which the migration of TCP/IP
connections can be useful. For instance, when there are
requirements of load balancing, quality of service, fault
tolerance, security. Hereafter, we present a solution for
migrating TCP/IP connections between Linux systems,
that we namedSockMi, that can be easily adopted for a
wide range of applications. With respect to other solutions,
SockMi i) is able to migrate both ends of a connection;ii)
does not require cooperation on both ends;iii) may be used
by a streamsocket in any state;iv) does not requireproxy
systems;v) may be activated via the standardsysctl
command.

2. Related work

In this section we present a quick overview of other so-
lutions that have been proposed to support the migration of
TCP connections.
Migratory TCP [1] (M-TCP) is a reliable connection-
oriented transport layer protocol that supports connection

migration for building highly available Internet services.
M-TCP can transparently migrate theserver endpoint of
a live connection and assist server applications in resum-
ing service on migrated connections. M-TCP provides a
generic solution to the problem of service continuity and
availability in case of connectivity failures. However, it
does not support the migration of the client side of a con-
nection (whereas in SockMi both sides of a connection can
migrate). Moreover, the addresses of cooperating servers
must be known at connection time.
MSOCKS [2] is an architecture for transport layer mobility
that allows mobile nodes not only to change their point of
attachment to the Internet, but also to control which network
interfaces are used for different kinds of data leaving from
and arriving at the mobile node. The transport layer mo-
bility scheme is implemented by using asplit-connection
proxy architecture and a technique calledTCP Splicethat
gives split-connection proxy systems the same end-to-end
semantics as normal TCP connections. In MSOCKS the
TCP sequence and ack numbers are modified when they
pass through the proxy. This entails that the TCP check-
sum must be updated. Authors claim that the overhead of
this operation is limited but it is not clear whether the mech-
anism scales well for a large number of connections.
Reliable sockets [3] (ROCKS) and reliable packets
(RACKS) are two systems that provide transparent network
connection mobility and protect sockets-based applications
from network failures. ROCKS does not require kernel
modifications and work atuser-level. Each system can de-
tect failure within seconds of its occurrence, preserve the
endpoint of a failed connection in a suspended state for an
arbitrary period of time, and automatically reconnect, even
when one end of the connection changes IP address, without
loss ofin-flight data. ROCKS are transparent to applications
but they must be present at both ends of the connection.
TCP Migrate option [4] allows a mobile host to restart a pre-
viously established TCP connection from a new address by
sending a special Migrate SYN packet that contains atoken
identifying the previous connection with the mobile host at
the new end point. The token is negotiated during the initial



connection establishment through the use of theMigrate-
PermittedTCP option. The migrated connection maintains
the same control block and state, including the sequence
number space. The main drawback of this approach is that
the peer must support the non-standardMigrateoption.
Mobile IP is a standard proposed within the Internet Engi-
neering Task Force [5] to solve the host mobility problem,
that is to maintain existing transport-layer connections as a
mobile node moves from place to place. To this purpose,
it allows a mobile node to use two IP addresses. Thehome
addressis fixed and identifies the TCP connections whereas
the care-of addresschanges at each new point of attach-
ment. The home address makes it appear that the mobile
node is continually able to receive data on its home network,
where Mobile IP requires the existence of a network node
known as thehome agent. Whenever the mobile node is not
attached to its home network (and is therefore attached to
what is termed a foreign network), the home agent gets all
the packets destined for the mobile node and arranges to de-
liver them to the mobile node’s care-of-address. Mobile IP
requires both the existence of a proxy (the home agent) and
the manipulation of the packets to maintain transport-layer
connections. However, with respect to M-TCP, this manip-
ulation takes place at IP (that is, network) level. Mobile IP
solves the problem of host mobility, whereas SockMi tries
to address the problem of connections migration (between
two hosts). Recently, tcpcp, a project similar to SockMi,
was presented in [6]. tcpcp is a mechanism that allows ap-
plications to transport the kernel state of a TCP endpoint
from one host to another, while the connection is estab-
lished, and without requiring the peer to cooperate in any
way. Tcpcp consists of a kernel patch for version 2.6.4 of
the Linux kernel that implements the operations for dump-
ing and restoring the TCP connection endpoint. However,
tcpcp is more a building block that can be integrated into
other systems rather than a complete solution for socket mi-
gration. For instance, it does not include a general mech-
anism for the redirection of network traffic and there is no
way to force a process to migrate a socket (the process must
invoke directly the migration primitive).

3. SockMi

The design ofSockMi (shown in figure 1) aimed at
achieving the following goals:

Transparency: The connection end-point that does not mi-
grate should not be affected by the migration mechanism in
any way with the exception of possible (but limited) delays
due to the “triangulation” mechanism described in Section
3.4. This implies that no information should be exchanged
between the peers to accomplish the migration.

Flexibility: It should be possible to migrate a socket de-

Figure 1. The design of the migration mecha-
nism implemented in SockMi.

scriptor regardless of its internal state, even a unconnected
socket, as if it were a file descriptor passing procedure. Note
that migrating a unconnected socket is interesting especially
for server-side use (e.g., migrating a socket inlistenstate).

Portability: The migration mechanism should have mini-
mum impact on the underlying operating system, meaning
that: i) no patchesto the kernel must be required;ii) no
new system calls must be introduced. To fulfill these re-
quirements, we implemented the migration mechanism as
a loadable kernel module (LKM ) and defined an Applica-
tion Programming Interface (see Section 3.3) that hides all
implementation details.

Symmetry: It should be possible to migrate both connec-
tion end-points.

Dynamicity: A connection end-point can be migrated more
than once.

In what follows we are going to describe the main compo-
nents of SockMi, namely the SockMi module, the SockMi
daemon, the SockMi API and the IP redirection mechanism.

3.1. The SockMi module

The SockMi module is the core of the TCP/IP socket
migration mechanism. In particular, the module is respon-
sible for the following tasks:i) saving (restoring) the state
of migrating sockets during the export (import) phase;ii)
exchanging information about migrating sockets with the
SockMidaemon;iii) providing low level primitives to ac-
tivate and control the socket migration facility. The data
structures involved in defining the state of a socket can be
found out by inspecting thetask struct structure. Note
that these data structures have cross references implemented
asC pointers to memory locations. As a consequence, a
simple approach based on data copy is not going to work,
because pointers would make no sense in a different address
space. Thus a primary requirement of the migration mech-
anism is to preserve the referential integrity among the data



structures that define the state of a socket.
Besides the state of the socket, SockMi migrates also the
corresponding“in-flight data” . These data are found in the
receive queue(packets received by the system but not read
by the application) and in thetransmit queue (packets to
be sent, or packets already sent but not yet ACKed) of the
socket. Both queues are a linked list ofsk buff struc-
tures that store packet data, a bunch of pointers to the header
of each networking layer and some additional information
about the packet itself (such as length, checksum,etc.).
The SockMi module holds sockets ready to be imported in
three different import lists corresponding to the TCP hash
tables managed by the Kernel:i) the boundsockets list;
ii) the listeningsockets list;iii) the connectedsockets list.
These lists change their length dynamically when a new
socket is received from the SockMi daemon or an applica-
tion imports a socket. However, to avoid potential memory
problems, we set a maximum length for each list. In case
a list reaches its maximum dimension, no more sockets can
be queued and the import fails with an error.
The module is SMP-safe and supports the effects of thepre-
emptionavailable in the 2.6 kernel.

3.2. The SockMi daemon

The SockMi daemon (SockMid) works in combination
with the SockMi module to support the socket migration
mechanism. The daemon carries out different tasks depend-
ing on the situation. During theexport phase, it reads the
state of exporting sockets from the SockMi module inter-
nal buffers; during thenegotiation phase, it communicates
with other SockMi daemons running on other hosts in or-
der to choose where to migrate the socket; finally, during
the import phase, it writes the state of importing socket to
the SockMi module internal buffers. During the import and
the export phase, the module and the daemon components
of SockMi need to exchange information about the state of
migrating sockets. Since the module lives in the kernel ad-
dress space whereas the daemon is a normal user process, it
is not possible to resort to standard Inter Process Commu-
nication (IPC) mechanisms to pass data between them.
To overcome this difficulty we implemented a buffer shar-
ing system via themmap()primitive.
The SockMi module is seen by the daemon as acharac-
ter device that, through itsmmap()file operation makes its
internal buffers available (i.e., it acts as amemory device).
In this way kernel buffers can be read and written by the
daemon as if they were in user space.

The module starts the export procedure by sending a sig-
nal USR1to the daemon when a socket is ready to be ex-
ported. On signal delivery, the daemon’s signal handler ex-
ecutes the following steps:

1. open the SockMi character device in read-only mode;

2. map, in read-only mode, the file descriptor obtained in
step 1;

3. copy information about the migrating socket in a user
space buffer;

4. unmap the file descriptor;

5. close the SockMi device;

6. notify the module that the buffer containing the state of
the socket to be exported can be released.

A complete socket migration entails the search for a host
willing to “import” the socket. To be eligible to the import
of a socket, a host must run an instance of SockMid.
SockMi defines and supports a communication protocol
among the SockMi daemons that run on different hosts.
Thisnegotiation protocol, follows a plain request-response-
confirm scheme that can be summarized as follows:

• when hostA exports a socket, it sends a request in mul-
ticast to the SockMi daemons that run on other hosts;

• when a request arrives, a host replies provided that ei-
ther the socket is explicitly exported to that host or no
specific target host is defined in the request;

• if host A does not receive a valid response within a
predefined timeout period, the migration fails;

• the first valid response triggers a confirmation mecha-
nism by which hostA notifies all SockMi daemons that
the socket has been successfully migrated.

Other responses arriving after the first one are simply dis-
carded. This is not a problem since each daemon assumes
that it has not been selected unless it receives an explicit
confirmation message. Choosing the first valid response is
a very natural yet simple policy. Other more sophisticated
policies based on rules or heuristics could be used. For ex-
ample, it could be useful to maintain statistics on previous
migrations and select the target host in such a way as to
achieve aload balancingamong the hosts. Collective com-
munication among the SockMi daemons relies onmulticast.
This means that all the instances of SockMid have to join
the same multicast group andbind() to the same UDP port.
Note that it is still possible to deploy more than one daemon
group by using different multicast addresses (corresponding
to different multicast groups) and/or different ports. Finally,
the daemon starts the import procedure and executes the fol-
lowing steps:

1. open the SockMi character device in read/write mode;

2. map, in write mode, the file descriptor obtained in step 1;

3. copy information about the socket state to the kernel
buffer made available by the SockMi kernel module;

4. unmap the file descriptor;



5. close the device;

6. signal that the buffer has been successfully written and
that the socket is ready to be imported (as in the export pro-
cedure, anioctl() primitive has been used to this purpose).

3.3. The SockMi Application Programming
Interface

SockMi provides a simple Application Programming In-
terface (API) in order to allow applications to activate the
socket migration mechanism.
A socket can be exported either by the “owner” process
or by another process having appropriate rights. The
API consists of two functions:import socket() and
export socket() . These functions hide the implemen-
tation details of the migration mechanism and provide ap-
plications with an easy-to-use method for importing and ex-
porting sockets.
To import one or more sockets, an application calls the
import socket() library function. This function is de-
signed to poll the availability of “exported” sockets match-
ing the import criteria specified by the application. If one
or more matching sockets are available, then the function
imports them immediately, by replacing the local sockets
referenced by the input descriptors, with the “exported”
ones. Otherwise, if no matching socket is available, the
function waits until either a timeout occurs or one or more
“exported” sockets become available for import. The pro-
totype of theimport socket() function is defined as
follows:

int import_socket(struct import_req *irqs,
unsigned int nirqs, int timeout);

It is apparent the similarity with the well-knownpoll()
primitive, from which import socket() inherits the
event polling behaviour. The main difference between the
two functions is thatpoll() does not have any side ef-
fect on the polled sockets, whereasimport socket()
replaces the input sockets, if successful. The information
required to formulate an import request are the following:
i) the descriptor of an unconnected local socket to be re-
placed with the imported socket;ii) the preferred state the
imported socket should have (any combination ofbound,
listeningandconnectedstates can be specified);iii) the set
of criteria a socket must match in order to be imported. The
import criteria let the application define the “properties” of
the socket to be imported. Such criteria are the set of al-
lowed socket states (any combination ofbound, listening
andconnectedis valid), the local and remote IP addresses,
and the local and remote TCP ports.
Convenient default values are defined, so it is not manda-
tory to provide all of the fields to complete an import re-
quest. Actually, only the socket descriptor and the socket

state mask are mandatory. Theimport socket() func-
tion tries to fulfil all requests according to abest–effortpol-
icy.

Exporting sockets is much simpler than importing, be-
cause there is neither need to specify criteria, nor a wait time
until the desired event occurs (i.e., the arrival of a matching
socket). To export sockets an application calls the function:

int export_socket(int pid, int fd,
int af, const void *to);

The first argument is the ID of the process owning the
socket to be exported (a negative value being an alias for
the caller). If the socket is owned by the process that in-
vokes the function, then the export is said to beactive. Oth-
erwise, the export is said to bepassive. The second argu-
ment is the descriptor of the socket to be exported. The
pair (pid, fd) is used byexport socket() to identify
in a unique way the socket to be exported. It is worth to
note here that nothing prevents the application from spec-
ifying the descriptor of a previously imported socket, thus
allowing amulti–hopsocket migration. The last two argu-
ments allow to define the network address of the importing
host. Theto argument may be a null pointer if there is
no need to specify a target system. In this case the func-
tion export socket() let the migration mechanism au-
tomatically select a target system, according to the internal
policy of the SockMid daemon.
Finally, a socket can be exported by means of thesysctl
command. For instance, the command line

$ sysctl -w sockmi.export="pid=510 fd=5"

exports a socket, represented by the descriptor number 5,
belonging to a process whose pid is 510.

3.4 IP Packet redirection

When a socket migrates to a different host it is necessary
to redirect the packets coming from the peer towards the
host that imports the socket. Moreover the packets sent to
the peer must have the same IP source address of the origi-
nal host (otherwise the peer replies with aRST packet).
Actually, two cases must be considered:i) the host that ex-
ports the socket can give up to its IP address in favor of
the host that imports the socket. This case can be managed
very easily, for instance by adding an “alias” IP address to
the importing host;ii ) the exporting and the importing host
maintain their original IP addresses because both send and
receive data on the network after the socket migration. To
deal with this, much more complex, situation we resort to a
special combination of Network Address Translation (NAT)
operations. In particular, we employ aDestination NAT
(DNAT) such that packets received by the exporting host
for the migrated socket are redirected to the importing host.



Figure 2. IP packets redirection

For this redirection the standard NAT capabilities offered by
thenetfilter module of the Linux kernel are adequate
[7]. The DNAT is triggered by the SockMi daemon running
on the exporting host. Besides the DNAT there is aSource
NAT (SNAT) on the importing host such that the source ad-
dress of packets sent by the imported socket is translated
into the address of the exporting host.
The mechanism is represented in figure 2. Note how the
mechanism isasymmetric: packets sent by the peer passes
through the exporting host (i.e., there is a “triangulariza-
tion”) whereas packets sent by the importing host go di-
rectly to the peer.
The SNAT required a modification to the standard NAT
mechanism since the latter has a side-effect: the reply tu-
ple is changed according to the applied address translation.
The problem is thatnetfilter expects to receive pack-
ets having destination address equal to the translated source
address whereas, in our case, the DNAT sets the destination
address equal to the real address of the importing host.
To solve the problem we resorted to the NAT helper mecha-
nism available in thenetfilter architecture. Basically it
allows to invoke acustomprocedure we wrote that performs
the address translation but does not alter the reply tuple.
Another issue has been the delay observed on the exporting
host during the redirection of the first packet coming from
the peer. This turned out to be an unpleasantside-effectof
the fact that the DNAT rule is applied to an already estab-
lished connection whereas netfilter calculates NAT bindings
only for new connections. The solution to avoid this delay
is to force the flush of exported connections from the net-
filter table immediately after the migration. We used the
ip ct selective cleanup() netfilter function to this
purpose.
The final problem we faced related to the IP packet redi-
rection was to prevent any unexpected connection termina-
tion during and after the migration. There are two possible

sources of troubles from this viewpoint:i) when the export-
ing host receives packets that it should redirect to the im-
porting host, the TCP layer automatically sends RST pack-
ets because the connection is considered closed (note that
the redirection happens at IP level);ii) when the process
that exported the socket terminates, the TCP layer sends the
FIN sequence that causes the shutdown of the connection.
The solution in this case has been to define a simple
iptables filter that drops all FIN and RST packets sent
by the exporting host to the peer. This filter is installed by
the SockMi daemon on the exporting host.

4. Conclusions and future perspectives

SockMi is a mechanism, based on the cooperation of a
kernel module and a daemon, that allows to migrate an end
of a TCP/IP connection to another Linux system running
the same software. SockMi is compatible with Linux ver-
sion 2.4 and 2.6 and the source code is available from:
http://sockmi.sf.net .
The porting of SockMi to other Unix-like operating sys-
tems depends mainly on the availability of the kernel source
code. From this viewpoint, the porting looks possible, for
instance, to the systems belonging to the BSD family.
At this time we have not analyzed yet if and how Win-
dows systems can support the migration of TCP connec-
tions. This appears, in any case, a major effort since the
implementation of sockets in Windows is significantly dif-
ferent with respect to Unix-like operating systems.

References

[1] F. Sultan, K. Srinivasan, D. Iyer, L. Iftode, Migratory
TCP: highly available internet services using connec-
tion migration, in Proc.22 ◦ ICDCS (2002).

[2] D. A. Maltz, P. Bhagwat, MSOCKS: an architecture
for transport layer mobility, in Proc. IEEE Infocom
(1998).

[3] V. C. Zandy, B. P. Miller, Reliable network connec-
tions, in Proc. ACM/IEEE Mobicom 2002.

[4] A. C. Snoeren, H. Balakrishnan: An end-to-end ap-
proach to host mobility, in Proc. ACM/IEEE Mobicom
(2000).

[5] C. Perkins, “IPv4 Mobility support”, RFC 2002, IETF
(1996).

[6] W. Almesberger, TCP Connection Passing, Proceed-
ings of the Linux Symposium, Ottawa (Canada), July
2004.

[7] http://www.netfilter.org


