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Abstract

This paper describes a system that enables the failover of
a TCP server endpoint in a manner that is transparent to
the clients and to the server applications. The failover can
occur at any time during the lifetime of a connection. The
failover is achieved by modifying the server’s TCP/IP stack.
No modifications are required to the client’s TCP/IP stack,
the client application or the server application. The system
supports active or semi-active replication of the server.

1. Introduction

To render a service highly available or fault tolerant, the
server application must run in a special environment. One
approach that is taken runs the application on specialized
hardware. Such systems remain operational even if some of
their components fail; unfortunately, such systems have a
high cost. An alternative approach uses standard computers
in a cluster, which is popular because of the lower hardware
cost. If a node fails, the application is transferred to a dif-
ferent node in the cluster. In practice, clusters range in size
from two to several hundred nodes.

In a cluster solution, the failover of an application from
one node to another is not entirely transparent. Although
techniques like IP takeover [4] and IP aliasing [14] allow
a backup server to take over the identity of a failed server,
connections that are established at the time of the failover
can no longer be maintained. Several solutions have been
proposed to tackle this problem, but all of them require
modifications of network edge or core routers, the client
application or the client’s TCP/IP protocol stack. Those ap-
proaches suffer from the drawback that the network and the
client typically belong to different organizations than that
of the server.

In this paper we describe a system that allows failover
of a TCP (Transmission Control Protocol [9]) server end-

point in a transparent manner. The failover can occur at any
time during the lifetime of the connection. The failover is
achieved by modifying the server’s TCP/IP stack. No mod-
ifications to the client’s TCP/IP stack, the client application
or the server application are required.

Although this paper focuses on two-way replicated sys-
tems, the proposed solution is not limited to two-way repli-
cation. Higher degrees of replication can be achieved by
daisy-chaining multiple backup servers. The description of
such systems is beyond the scope of this paper.

When failing over a TCP server endpoint from a primary
server to a secondary server, the server application must be
present on both hosts. We assume that the server application
process is actively replicated. With active replication, the
server application runs on both hosts. Both server processes
accept connections, handle requests and generate replies.
They both go through the same state transitions. The server
process must behave deterministically on a per connection
basis. By that we mean that when a client connects to a
server and issues a request, it will receive a particular reply.

An on-line store is an example of a deterministic service.
Unless two customers compete for the last remaining item,
each client will get a well-defined response to a browse or
purchase request — independent of the fact that the server
implementation uses an independent thread per client.

In TCP connection establishment, one side (the TCP
server) listens for incoming connection requests, while the
other side (the TCP client) connects to the server. The
approach discussed in this paper allows for the replicated
server application to act as a TCP server (e.g., a replicated
Web server that accepts connection requests from unrepli-
cated clients) or as a TCP client (e.g., a replicated Web
server that connects to an unreplicated back-end database).

First, we give the requirements for a TCP failover solu-
tion. Then we describe the workings of the failover mech-
anism for a single TCP connection in the fault-free case.
Next we examine its behavior in the case that the server
fails. Finally, we describe the connection establishment and



termination procedures. Reintegration of failed servers is
beyond the scope of this paper.

The TCP failover mechanisms reside in the primary and
secondary servers’ network stack between the TCP layer
and the IP layer. Throughout the paper, we refer to this
sublayer as thebridge.

2. Maintaining the Correct State of a TCP
Connection

The TCP layer resides above the IP (Internet Protocol) layer.
TCP accepts messages from the user application and divides
the message into TCP segments. The TCP segments are
passed to the IP layer, where they are packed into IP data-
grams. The routers that reside between the client computer
and the server computers work at the IP layer and, therefore,
have no knowledge of TCP.

To perform a TCP connection endpoint failover from a
primary server to a secondary server that is transparent to
the client, four requirements must be satisfied:

1. IP datagrams that the client sends to the primary server
must be redirected to the secondary server. A solution
is given in [4].

2. The secondary server must have a copy of all TCP seg-
ments sent by the client that the primary server has ac-
knowledged. The primary server must not acknowl-
edge a client’s TCP segment until it has received an
acknowledgment of that segment from the secondary
server.

3. The secondary server must have a copy of all TCP
datagrams sent by the primary server that have not
been acknowledged by the client. If the client
acknowledges a server TCP segment, the primary
server and the secondary server must each receive
the acknowledgment and remove the segment from its
buffers.

4. The secondary server must synchronize its TCP se-
quence numbers with the sequence numbers used by
the primary server. The order of the sequence numbers
must not be violated in case of a failover. The client
will reset the connection if it detects a violation in the
order of the sequence numbers.

In addition, the secondary server must respect the Maxi-
mum Segment Size (MSS) [10] and the maximum window
size that were negotiated between the primary server and
the client at connection establishment.

To detect the failure of a server process or server host,
the system employs a fault detector.

3. Connection Management in the Fault-Free
Case

We consider a client application running on host C that com-
municates to a replicated server application with primary
server P and secondary server S via a TCP failover connec-
tion, as shown in Figure 1.

The client application sends a request to the server by
passing the request message to the TCP layer. The TCP
layer packs the data into TCP segments. Each segment con-
tains a unique sequence number. Next the TCP segment is
passed to the IP layer, which packs the TCP segment into
an IP datagram. The IP datagram header contains the IP
address of the sender (source) host and the IP address of
the receiving (destination) host. In this particular case, the
source address is the IP address of the client ac. The destina-
tion address of the datagram is the IP address of the primary
server ap.

3.1. Secondary Server

The secondary server, whose network interface runs in
promiscuous mode, receives all of the client’s datagrams.
The secondary server bridge discards all datagrams that do
not contain a TCP segment or that are not addressed to P.
For all other datagrams, the bridge replaces the original des-
tination field with the address as of the secondary server and
passes the datagram to the TCP layer. TCP assumes that C
sent this segment directly to S. The TCP layer extracts the
original client request and passes it to the server application.

After the secondary server application has processed the
client’s request, it generates a reply. The secondary server
TCP layer generates one or more TCP segments that contain
the reply and passes them to the secondary server bridge.

If the secondary server bridge receives a segment that is
addressed to the client C, it replaces the destination address
field of the segment with the address of P. Thus, all TCP
segments intended for the client are diverted to P. The orig-
inal destination address of the segment is included in the
segment as a TCP header option.

Modifying the TCP header of the segment requires recal-
culation of the TCP checksum. Note that it is not necessary
to recompute the checksum from scratch. Instead, we sub-
tract the original bytes from the checksum, and add the new
bytes to the checksum.

3.2. Primary Server

When receiving the datagram on the network, the IP layer
of P delivers the content of the datagram to the TCP layer,
which then extracts the original client request and passes it
to the server application.
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Figure 1. Structure used to achieve the transparent failover of a TCP connection endpoint.

After the primary server application processed the
client’s request, it generates a reply. If the server applica-
tions behave deterministically, both replies are identical.

The TCP layers pack the replies into TCP segments.
Note that, although the application replies are identical, the
TCP layers might not generate two identical sets of TCP
segments. Due to flow control, one of the server’s TCP layer
might split the reply into multiple TCP segments, whereas
the other server’s TCP layer might pack the entire reply into
a single segment.

When obtaining segments from the TCP layer, the pri-
mary server bridge must not send the segment directly. In-
stead, it puts the payload in the primary server output queue
and waits until it receives corresponding data from S. The
primary server bridge must not send any data to the client
until it has received the data from S and its own TCP layer.

When the primary server bridge receives the TCP seg-
ment sent by S, it matches the segment’s payload against
the content of the primary server output queue. The bridge
constructs a new segment that contains all of the matching
payload bytes. The remaining bytes of the original segment
are enqueued in the secondary server output queue.

The new segment carries the address of the primary
server P in the source field and the address of the client
C in the destination field. The acknowledgment field con-

tains either the acknowledgment sequence number of the
last segment the bridge has received from P or S, whichever
is smaller. The same procedure is used to fill the window
size field of the new segment.

Choosing the smaller of the two acknowledgments guar-
antees that both servers have successfully received all of the
clients data up to the sequence number of the forwarded ac-
knowledgment. Choosing the smaller of the two window
sizes adapts the client’s send rate to the slower of the two
servers and, thus, reduces the risk of message loss.

3.3. Synchronizing Sequence Numbers

To establish a new connection, P and S choose starting se-
quence numbers seqP;init and seqS;init. The primary server
bridge calculates the the sequence number offset�seq as the
difference between the two initial sequence numbers:�seq

= seqP;init � seqS;init. See Section 7 for more details.
The primary server bridge synchronizes to the sequence

numbers generated by the secondary server. The primary
server bridge receives all segments generated by the sec-
ondary server. The synchronization is achieved without any
additional communication between the two servers.

To compare the sequence numbers of segments sent by
the secondary server S and the primary server P, the primary



server bridge subtracts�seq from the sequence numbers of
all segments it receives from the primary server’s TCP layer.

3.4. Constructing new TCP Segments

Figure 2 illustrates the primary server bridge building TCP
segments. On the left side of the figure, we see the primary
server bridge receiving a segment from the primary server’s
TCP layer. The segment contains the payload bytes 51 to
54. After subtracting�seq , which we assume to be 30, from
the sequence number, the payload bytes are enqueued in the
primary server output queue. After that, the bridge receives
a segment sent by the secondary server that carries the pay-
load bytes 23 to 26. The bridge finds and removes matching
payload bytes 23 and 24 in the primary server output queue,
and creates a new TCP segment. The remaining bytes 25
and 26 are enqueued in the secondary server output queue.

If the bridge obtains a TCP segment from a server but
cannot build a TCP segment because the queue of the other
server does not contain any matching payload, it compares
the minimum of P’s and S’s most recent acknowledgments
with the acknowledgment of the previous TCP segment it
built. If the former is greater than the latter, the bridge con-
structs a TCP segment with no payload. This prevents a
deadlock in case the server applications do not send any
data to the client. In this case, TCP must send empty seg-
ments to acknowledge the client segments.

Being a duplex connection, TCP tries to piggyback ac-
knowledgments of a data stream to the segments of the
stream that goes in the other direction. If no data is sent
in the other direction, TCP creates a delayed acknowledg-
ment. A delayed acknowledgment is a TCP segment that
carries no user payload. If the bridge receives such a seg-
ment, it updates the ACK and WinSize fields of the sender
and compares the new ACK value with the ACK of the last
segment that it sent to the client. If the former is greater
than the latter, the bridge constructs a TCP segment with no
payload.

4. Loss of Messages

If a segment m is dropped in TCP, two things happen at the
receiver. First, the receiver will not acknowledge m or any
later segments that the sender of m sends. After the sender’s
retransmission timer expires, it retransmits m. Second, the
receiver will not receive the acknowledgment ackk that the
sender attached to m. ackk acknowledges the receiver’s seg-
ment k. If the sender does not send additional segments that
acknowledge k, the receiver’s retransmission timer expires,
and the receiver retransmits k.

The TCP failover extension must be able to handle mes-
sage loss. Message loss can occur at the following places:

� The primary server does not receive a client segment
m. The TCP layer of the primary server P does not ac-
knowledge m. Consequently, the primary server bridge
does not acknowledge m. The client C retransmits m
after C’s retransmission timer expires.

Message m might carry an acknowledgment ackk for
a segment k that the server sent. Because the pri-
mary server does not receive ackk, it retransmits k. By
comparing k’s sequence number with the last sequence
number it sent, the primary server bridge recognizes
that k is a retransmission. It, therefore, does not en-
queue k, but sends k immediately. This is necessary
because the bridge receives only a single copy of k.

� The secondary server drops the client segment al-
though the primary server receives it. This case is sim-
ilar to the case described above.

� A client segment is lost on its way to the servers. If
neither S nor P has received the client’s segment m,
neither has received ackk and, therefore, both retrans-
mit k. In this case, the primary server bridge sends k
twice.

� The secondary server’s segment is dropped by the pri-
mary server. If a segment m sent by the secondary
server S is not received by the primary server bridge,
the bridge is not sending any more segments to the
client C. Consequently, C will never acknowledge m
or any later server segments, and both servers will re-
transmit m. Assume that the bridge receives S’s re-
transmission first. As soon as it receives S’s copy of m,
it sends m to the client C. When it receives P’s copy,
the bridge recognizes this copy as a retransmission and
sends it again. In case the bridge receives P’s copy
first, it finds m in P’s queue and discards the second
copy of m. As soon as the bridge receives S’s copy of
m, it sends m to the client.

� The primary server’s segment is lost on its way to the
client. If a segment m is dropped on its way from the
primary server bridge to the client C, the client C will
not acknowledge m. Consequently, both servers will
retransmit m after their retransmission timer expires.
Again, the primary server bridge will send two copies
of m to C.

5. Failure of the Primary Server

If the fault detector detects that the primary server failed,
the secondary server performs the following tasks:

1. Tell the secondary server bridge to stop sending TCP
segments to the IP layer that are addressed to the client.
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Figure 2. Primary server bridge constructs TCP segments.

2. Disable the promiscuous receive mode of the network
interface.

3. Disable the ap-to-as address translation of the destina-
tion field for incoming TCP segments.

4. Disable the ac-to-ap address translation of the destina-
tion field for outgoing TCP segments.

5. Take over the IP address of the primary server.

After the change of IP address is completed, the bridge re-
sumes sending TCP segments.

If the primary server fails, it is guaranteed that the sec-
ondary server has received all TCP segments that the pri-
mary server has acknowledged. If the secondary server has
received additional segments, it acknowledges them. How-
ever, those acknowledgments are sent to the primary server
as long as the bridge has not been reconfigured.

We let T be the time interval from the time of the fail-
ure of the primary server to the time the router updates its
Address Resolution Protocol (ARP) table as a response to
the ARP request that the secondary server sent. None of
the TCP segments that the secondary server sent during T
reaches the client, which has two effects. First, the client
will not acknowledge any of those segments, and the sec-
ondary server will retransmit those segments. Second, the

client will not receive acknowledgments for any segments
it sent after the primary server failed, and the client retrans-
mits those segments periodically.

The secondary server can receive data from the client
until the promiscuous receive mode of its network interface
is disabled. The secondary server’s TCP layer discards TCP
segments that the client retransmitted if it has received a
copy of those segments.

After the completion of the IP takeover, the secondary
server sends its acknowledgments directly to the client. The
secondary server acknowledges only those segments it has
received. The secondary server does not receive a client’s
segments if it dropped them before the IP takeover occurred,
or if the router forwarded the segments between the time
that the secondary server disabled the promiscuous receive
mode and the router updated its ARP table. The client
will retransmit any unacknowledged segments. Because the
client has not received an acknowledgment from the pri-
mary server, the client must have a copy of those segments.

During the reconfiguration of the secondary server
bridge, neither the sequence number counter nor the ACK
sequence number nor the window size needs to be changed.
All TCP segments that have been sent to the client contain
sequence numbers that match the sequence numbers of the
segments that the secondary server generated. The TCP seg-
ments that the primary server sent to the client carried the



smaller of the ACKs and window sizes that were advertised
by the TCP layers of the primary server and the secondary
server.

Once the IP takeover is completed, the secondary server
disables all functions of its bridge and behaves like any stan-
dard TCP server.

6. Failure of the Secondary Server

If the fault detector detects a failure of the secondary server,
the primary server performs the following tasks:

1. Remove all payload data from the primary server out-
put queue, place the data into a newly created TCP seg-
ment (or multiple segments, if necessary), and send the
segment to the client.

2. Disable the demultiplexer for incoming IP datagrams.
Route all incoming TCP segments directly to the TCP
layer.

3. Disable the delay of TCP segments that the primary
server created. Do not modify the acknowledgment
field or the window size of those segments. However,
continue to subtract the offset�seq from the sequence
number field of all outgoing TCP segments that are ad-
dressed to the client.

After the completion of the recovery from the failure of
the secondary server, all TCP segments that the primary
server sent to the client contain the acknowledgment ackP

and window size winP that the primary server’s TCP layer
chose.

During normal operation, all segments that the primary
server bridge sends to the client carry sequence numbers
that the secondary server S assigned. The bridge adjusts all
sequence numbers assigned by the TCP layer of the primary
server P by subtracting�seq . In case the secondary server
fails, the bridge of the primary server must not discontinue
to compensate the offset because the client’s TCP layer is
synchronized to the sequence numbers that the secondary
server generated.

7. Connection Establishment

The primary and secondary server bridges must be able to
distinguish between TCP failover connections, which are
serviced by the replicated server, and ordinary TCP connec-
tions. This distinction must be made for each segment that
passes through the primary and secondary server bridges.

We implemented two methods for specifying whether a
TCP connection is a TCP failover connection. In the first
method, the socket interface was augmented to allow the
application program to set the TCP failover option for each

streaming socket it opens. This scheme is flexible and el-
egant, but requires modification of the application source
code.

In the second method, the user can enable the TCP
failover option for a set of port numbers. All connections
that use one of those ports are treated as TCP failover con-
nections. The user must specify the same set of ports on the
primary server host and the secondary server host.

7.1. Client-Initiated Connection Establishment

Establishing a TCP connection involves a three-way hand-
shake. First, the endpoint that requests the connection
(client) sends a TCP segment that has the synchronization
flag set (SYN segment) to the listening endpoint (server).
The SYN segment specifies a server port and contains the
client’s initial sequence number. If the server wants to ac-
cept the connection, it sends back a SYN segment that ac-
knowledges the client’s SYN segment. The server’s seg-
ment contains the server’s initial sequence number and an
acknowledgment for the client’s SYN segment. For the
third step, the client acknowledges the server’s SYN seg-
ment. The connection is then established, and either side
can send TCP segments.

When the client sends its initial SYN segment to estab-
lish a TCP failover connection, both primary and secondary
server receive the SYN segment. The primary server bridge
passes the SYN segment to the TCP layer. When the TCP
layer accepts the connection request, it sends a SYN seg-
ment in return. On receiving this segment from the TCP
layer, the primary server bridge creates the primary and sec-
ondary server output queues, and enqueues the segment.
At the same time, the bridge stores the sequence number
seqP;init of that segment to be able to perform the sequence
number offset calculation.

No special action is necessary at the secondary server.
The secondary server bridge performs the address transla-
tion for the incoming and outgoing SYN segments based on
the network ID of the client endpoint’s IP address.

When the primary server bridge receives the SYN seg-
ment that the secondary server’s TCP layer created, it cal-
culates the sequence number offset�seq by subtracting the
sequence number of that segment seqS;init from seqP;init.
Then the primary bridge constructs the SYN segment to be
sent to the client. The MSS field of that segment is set to
the minimum of the Maximum Segment Size (MSS) fields
contained in the SYN segments that the TCP layers of the
primary and secondary servers created. By sending the TCP
segment, the primary server bridge completes its initializa-
tion procedure.

The client TCP layer completes the three-way handshake
by sending an acknowledgment for the server’s SYN seg-
ment. The primary server bridge and the secondary server



bridge handle the acknowledgment segment in the same
way as all future incoming segments.

The primary server must maintain a primary server out-
put queue and a secondary server output queue for every
active TCP connection. A TCP connection is uniquely iden-
tified by the 4-tuple (client IP address, client TCP port num-
ber, primary server IP address, primary server TCP port
number).

7.2. Server-Initiated Connection Establishment

The primary server P and the secondary server S initiate
the establishment of a TCP connection to an unreplicated
server T (e.g., back-end database server in a multi-tier sys-
tem) by sending a SYN segment. Assuming that the appli-
cation running on P and S is deterministic, both P’s TCP
layer and S’s TCP layer generate a SYN. When it receives
the first SYN segment, P’s bridge creates the output queues
and enqueues the segment. When the bridge of one server
receives the other server’s SYN segment, it calculates the
sequence number offset, creates a SYN segment and sends
it to T. When the TCP layer of T accepts the connection re-
quest, it sends a SYN segment in return. The primary server
bridge and the secondary server bridge handle the acknowl-
edgment segment in the same way as all future incoming
segments. The servers complete the three-way handshake
by sending an acknowledgment for the client’s SYN seg-
ment.

8. Connection Termination

Terminating a TCP connection involves a four-way hand-
shake. TCP requires that each direction of the connection
is shut down independently of the other. To terminate one
direction of a TCP connection, the sending endpoint must
send a TCP segment with the FIN flag set. Either side can
initiate the connection termination process. The other end-
point acknowledges the FIN segment. The connection is
then in a half-closed state, in which the endpoint that has
not sent the FIN is still allowed to send data. The other end-
point must acknowledge all incoming segments, but is not
allowed to send data. The half-closed state prevails until the
side that remained active sends a FIN. As soon as the other
side acknowledges the FIN, the connection is closed.

As in connection establishment, only the primary server
bridge is actively involved in connection termination. The
primary server bridge remains active as long as the connec-
tion is not fully closed. In a half-closed state, the primary
server bridge must merge the segments generated by the pri-
mary and backup servers. As long as the client-to-server
side remains open, the primary server acknowledges client
segments only if the secondary server has acknowledged
those segments. Otherwise, the secondary server might

not have segments that the primary acknowledged when a
failover occurs. As long as the server-to-client side remains
open, the primary server must not send any segments to the
client before it receives identical segments from the sec-
ondary server.

If the primary server bridge receives the first FIN from
the client, it marks the TCP connection closed by the client.
As soon as it sends the FIN that the server generated, the
bridge marks the connection as fully closed. It then waits
for the client’s acknowledgment of the server’s FIN and
deletes all internal data structures that were allocated for the
connection. If the secondary server S does not receive the
client’s ACK for the FIN segment, S retransmits it. When
the bridge receives a FIN that S sent after the bridge re-
moved all internal data structures associated with the con-
nection, it creates an ACK and sends it back to S.

If the TCP layers of the primary and secondary servers
terminate the connection, the primary server bridge inter-
nally marks the TCP connection as closed by the servers.
As soon as the bridge receives the FIN sent by the client
C, it marks the connection as fully closed. It then waits
for the servers’ acknowledgment of the client’s FIN. The
bridge deletes all internal data structures that were allocated
for the connection after it sent the segment that contains
the ACK of the client’s FIN. If the client does not receive
the servers’ ACK, it retransmits the FIN. When the primary
server bridge receives a FIN sent by the client C after it re-
moved all internal data structures associated with the con-
nection, it creates an ACK and sends the ACK back to C.

9. Measurements

To measure the performance of the TCP Failover protocol,
we conducted a number of experiments. The TCP Failover
protocol was implemented in the FreeBSD 4.4Lite kernel,
which ran on 566MHz Pentium III Celeron PCs. The client
computer was a 1GHz Pentium III PC running Mandrake
7.2 Linux, which ran the 2.2.17 kernel. The PCs were con-
nected using 100Mbit/s Ethernet.

All measurements were done from the viewpoint of
a client application that communicates with a redundant
server using TCP Failover.

We first measured the connection time from a client ap-
plication to a redundant server and compared those numbers
to the standard TCP connection time. We made sure that
the MAC addresses of all nodes were present in the ARP
caches. If the MAC addresses are not cached, the client and
the router must run the ARP protocol, which adds about
300�s to the connection setup time. The time for ARP af-
fects standard TCP and TCP Failover in the same way.

The median connection setup time for standard TCP is
294�s with a maximum of 603�s; the median connection
time for TCP Failover is 505�s with a maximum of 1193�s.
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Figure 3. Client-to-server data transfer.

Next we measured the send and receive times of mes-
sages of different length. Figure 3 shows the median time
it takes an application to send a message to an unreplicated
server using standard TCP, and to a replicated server using
TCP Failover. The message length varied from 64 bytes to
1 MByte.

It can be seen that the send time for messages up to
32 KBytes does not increase at the same rate as the send
times for larger messages. This is due to the 64 KByte TCP
send buffer. The send call returns when the application has
passed the last byte to the stack, not when the last byte has
been put on the wire. The effect of the send buffer decreases
with increasing message size.

We obtained similar results for server-to-client data
transfer. In this case, the client application sends a 4-byte
message to the server, and the server sends a reply message
back to the client. Figure 4 shows the time that elapsed be-
tween the client starting to send the 4-byte message, and the
client receiving the last byte of the servers’ reply. The size
of the reply messages varies from 64 bytes to 1MByte. The
non-linearity in the standard TCP measurement is caused
by collisions on the Ethernet. The probability of acknowl-
edgments colliding with data packets varies with message
size.

Figure 5 compares send and receive rates between stan-
dard TCP and TCP Failover. The rates were measured
by having a client send and receive data streams of 100
MBytes.

We choose the File Transfer Protocol (FTP) to test TCP
Failover with a real-world application. The File Transfer
Protocol (FTP) allows a client to upload and download files
from a remote size. The remote site runs an FTP server,
which listens on a well-known port (port 21). An FTP client
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Figure 4. Server-to-client data transfer.

opens an ephemeral port (a port chosen by the operating
system) and connects to the server’s FTP port. This connec-
tion is used to exchange control data. After the server has
verified that the client is permitted to access the server’s file
system, the client opens a server socket with an ephemeral
port and informs the server of the chosen port number.

Every time the client initiates a data transfer (get or
put ), it sends a request to the server. The server opens
a client socket on port 20 (FTP data) and connects to the
client. The server and the client exchange the file content
via the data connection. Once the transfer has completed,
both sides terminate the data connection.

We connected an FTP client to the replicated FTP server
via a wide-area network and transfered files of different
sizes. Figure 6 lists median send and receive rates as in-
dicated by the FTP client.

As these results illustrate, measurements over a wide-
area network are highly dependent on competing traffic and
on packet loss rates and, thus, vary widely.

standard TCP TCP Failover
connection connection

send rate 7833.70KB/s 5835.80KB/s
receive rate 8707.88KB/s 3510.03KB/s

Figure 5. Comparison of send and receive
rates for long data streams.



file get file put file
size standard TCP standard TCP

[KB/s] TCP failover TCP failover
0.2 8.75 8.75 512.38 536.05
1.3 59.03 59.03 2033.76 2036.87

18.2 90.41 70.74 3846.13 3890.42
144.9 156.80 138.35 219.52 200.31

1738.1 176.03 171.72 168.07 176.63

Figure 6. FTP send and receive rates in
KBytes/s.

10. Related Work

TCP splicing [13] is a technique that is used to improve
performance and scalability of application-level gateways.
Clients establish TCP connections to a dispatcher applica-
tion. The dispatcher chooses an appropriate server to handle
a client connection. Then the dispatcher modifies the TCP
stack of the dispatcher host to forward all TCP packets of
that connection directly to the selected server. No further
involvement of the dispatcher is necessary until the connec-
tion is terminated.

TCP splicing requires that all traffic flows through the
dispatcher. TCP handoff [3] removes the dispatcher by let-
ting the client connect directly to one of the servers. If
the initial server decides that another server is better suited
to handle the connection, it transfers the TCP connection
state to an alternative server. TCP handoff requires a spe-
cial front-end layer-4 switch that routes the packets to the
appropriate server.

Snoeren and Balakrishnan [12] describe a TCP migra-
tion scheme that is transparent to the client application but
requires modification to both the client and server TCP
layer. A change in the network infrastructure (e.g., Inter-
net routers, underlying protocols) is not required. The mi-
gration of the connection can be initiated by the client or
any of the servers. The replicated servers can be geograph-
ically distributed. At any point in time, only one server is
connected to the client. Multicasting or forwarding of the
client’s data is not possible.

Sultan, Srinivasan, Iyer and Iftode [15] propose M-TCP,
a TCP connection migration scheme that moves a server’s
TCP endpoint to a different location. In addition to migrat-
ing the TCP endpoint, M-TCP moves a limited amount of
application state and synchronizes the application and the
TCP layer. M-TCP requires the support of both the client
and server TCP layer. The migration is initiated by the
client. During the migration process, both servers are re-
quired to be operational, which renders this approach un-
suitable for fault tolerance.

Shenoy, Satapati and Bettati [11] propose a fault-tolerant
extension of the HydraNet infrastructure to replace a single
server with a group of replicated servers. Their approach
does not require any modification of the client’s TCP layer.
Instead, all IP packets sent by the client to a certain IP ad-
dress and port number are multicast to a set of replicated
servers, which can be geographically distributed. For this
scheme to work, all traffic must go through a special redi-
rector, which resides on an Internet router. To maintain
consistency between all server replicas, the system sup-
ports atomic multicasting. The forwarding service is not
restricted to TCP, but can accommodate any transport pro-
tocol that is based on IP.

Alvisi, Bressoud, El-Khashab, Marzullo and Zagorod-
nov [2] describe a system in which all client-server TCP
communication is intercepted and logged at a backup com-
puter. When the server fails, the server application is
restarted and all stack activity is replayed. The backup node
performs an IP takeover and takes over the role of the server
node for the remaining lifetime of the connection. No mod-
ifications are required to the client TCP stack, the client ap-
plication or the server application. To operate properly, the
backup node must be operational before the connection be-
tween the client and the server is established. Although the
failover happens transparently to the client, the failover time
can be significant due to the replay of the entire history of
the connection.

Orgiyan and Fetzer [8] describe a system that replicates
a server application in a semi-active manner. TCP server
endpoints are replicated. Similar to the TCP Failover ap-
proach, their approach puts the network interface of the
secondary server into promiscuous mode. The system em-
ploys a leader/follower protocol to avoid inconsistent be-
havior caused by non-determinism. The snooping of net-
work traffic reduces the overhead of the leader/follower pro-
tocol communication. Their approach requires the modi-
fication of the server application and the system libraries
of the server and the client hosts. It is not clear whether
the system is always able to maintain ongoing TCP connec-
tions in case of a node failure. If the secondary server drops
a TCP segment that the primary server has acknowledged
and then the primary server host fails, the segment cannot
be recovered, the connection must be abandoned and the
client must reestablish the connection.

Fetzer and Mishra [5] propose a system that allows the
transparent replication of servers that communicate to un-
replicated clients via TCP. This approach appears to be very
similar to TCP failover. The secondary server taps into con-
nections that are established between the primary server and
the client by using a promiscuous receive mode. The client
remains unmodified.

SwiFT [6, 7] provides fault tolerance for user applica-
tions, including modules for error detection and recovery,



checkpointing, event logging and replay, communication er-
ror recovery and IP packet rerouting. The latter is achieved
by providing a single IP image for a cluster of computers.
Addressing within the cluster is done by MAC addresses.
All traffic from clients is sent to a dispatcher, which for-
wards the packets to one of the servers. The clients must
run the SwiFT client software to reestablish TCP connec-
tions in case the server fails.

Aghdaie and Tamir [1] describe a system to replicate
Web servers. The basic concept of their solution is similar
to the TCP failover approach. To avoid changes to the server
operating system, the authors implemented their scheme in
user space by using IP sockets. The server application is
passively replicated. The backup proxy logs client requests
and server replies. The drawback of this scheme is the poor
performance resulting from the context switches and proto-
col stack traversals that are needed for an implementation
entirely in user space.

11. Conclusion

We have described TCP Failover, a protocol that enables
the failover of a TCP server endpoint in a manner that is
transparent to the clients and to the server application. If
a fault occurs, TCP Failover migrates the TCP server end-
point from a primary server to a backup server. The failover
is achieved by modifying the server’s TCP/IP stack. No
modifications are required to the client’s TCP/IP stack, the
client application or the server application. The overhead is
reasonable, given that the approach is completely transpar-
ent to both the clients and the server application.
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