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1 Motivation

Today’s Internet services are commonly built over
TCP [5], the standard Internet connection-oriented reliable
transport protocol. The endpoint naming scheme of TCP,
based on network layer (IP) addresses, creates an implicit
binding between a service and the IP address of a server
providing it, throughout the lifetime of a client connection.
This makes a TCP client prone to all adverse conditions
that may affect the server endpoint or the internetwork in
between, after the connection is established: congestion or
failure in the network, server overloaded, failed or under
DoS attack. Studies that quantify the effects of network sta-
bility and route availability [4, 2] demonstrate that connec-
tivity failures can significantly impact Internet services. As
a result, although highly available servers can be deployed,
sustaining continuous service remains a problem.

Service continuity can be defined as the uninterrupted de-
livery of a service, from an end user’s perspective. The
TCP’s ability to support it is limited by its error recovery
scheme based on retransmissions to the same server end-
point of the connection (bound to a specific IP address). In
practice, the end user might be more interested in receiving
continuous service rather than statically binding to a given
server. As server identity becomes less important than the
service, it is desirable for a client to switch servers during a
service session, e.g., if a server cannot sustain the service.

We propose the cooperative service model, in which a
pool of similar servers, possibly geographically distributed
across the Internet, cooperate in sustaining a service by mi-
gration of client connections within the pool. The control
traffic between servers, needed to support migrated connec-
tions, can be carried either over the Internet or over a pri-
vate network. From client’s viewpoint, at any point during
the lifetime of its service session, the remote endpoint of its
connection may transparently migrate between servers.
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2 Migratory TCP (M-TCP)

To enable the cooperative service model for service con-
tinuity we have designed Migratory TCP (M-TCP) [10, 8],
a reliable connection-oriented transport layer protocol that
supports efficient migration of live connections. The pro-
tocol enables stateful servers to seamlessly resume service
on migrated connections by transferring an application-
controlled amount of specific state. Although fine-grained
connection migration solutions have been proposed before
by exploiting features of application-level protocols like
HTTP [7, 11], to our best knowledge M-TCP is the first
solution that provides generic migration support through a
TCP-compatible transport protocol.

The M-TCP design assumes that the state of the server
application can be logically split among connections by
defining fine-grained state associated with each connection.

The M-TCP service interface can be best described as
a contract between the server application and the trans-
port protocol. According to this contract, the applica-
tion must execute the following actions: (i) export a state
snapshot at the old server, when it is consistent with data
sent/received on the connection; (ii) import the last state
snapshot at the new server after migration, to resume ser-
vice to client. In exchange, the protocol: (i) transfers the
per-connection state to the new server and (ii) synchronizes
the per-connection application state with the protocol state.

The migration mechanism of M-TCP (Fig. 1) ensures
that the new server resumes service while preserving the
exactly-once delivery semantics across migration, without
freezing or otherwise disrupting the traffic on the connec-
tion. The client application does not need to change.

A client contacts the service through a connection C id to
a preferred server S1. At connection setup, S1 supplies the
addresses of its cooperating servers, along with migration
certificates. The client-side M-TCP initiates migration of
Cid by opening a new connection to an alternate server S 2,
sending the migration certificate in a special option. (Fig.
1 (a)). To reincarnate Cid at S2, M-TCP transfers associ-
ated state (protocol state and the last snapshot) from S1.
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Figure 1. Migration mechanism in M-TCP. Connec-
tion Cid, initially established by client C with server
S1, migrates to alternate server S2.

Depending on the implementation, the state transfer can be
either (i) lazy (on-demand), i.e., it occurs at the time migra-
tion is initiated, or (ii) eager, i.e., it occurs in anticipation of
migration, e.g., when a new snapshot is taken. Fig. 1 shows
the lazy transfer version: S2 sends a request (b) to S1 and
receives the state (c). If the migrating endpoint is reinstated
successfully at S2, then C and S2 complete the handshake,
which ends the migration (d).

Upon accepting the migrated connection, the server
application at S2 imports the state snapshot. It then re-
sumes service using the snapshot as a restart point, and per-
forms execution replay for a log-based recovery [3] sup-
ported by the protocol. The execution replay restores the
state of the service at the new server and synchronizes it
with the protocol state. To support the replay, M-TCP logs
and transfers from S1 data received and acknowledged since
the last snapshot. It also transfers unacknowledged data sent
before the last snapshot, for retransmission from S2.

3 Implementation and Applications

We have implemented M-TCP in FreeBSD as an ex-
tension to the TCP/IP stack, compatible and inter-operable
with the standard TCP [8]. M-TCP is decoupled from and
can work with various migration policies [10].

We identify two classes of services that can benefit from
M-TCP: (i) Applications that use long-lived connections,
e.g., multimedia streaming services, applications in the In-
ternet core [6], etc.; (ii) Critical applications from which
end users expect both correctness and good response time,
e.g., Internet banking, e-commerce, etc.

To demonstrate the potential of M-TCP in providing ser-
vice continuity, we have implemented and evaluated two
applications. The first one is a synthetic (generic) media

streaming server, for which we use M-TCP in conjunction
with a migration policy based on estimated inbound data
rate. Migration is triggered when the throughput perceived
on the client side falls under a fraction of the maximum
observed. We show that, for the same profile of perfor-
mance degradation at a server, M-TCP can sustain effective
throughput close to the average server profile by migrating
the connection between servers.

The second application is remote access over the Inter-
net to a transactional database server. We have augmented a
PostgreSQL [1] database back-end with support for migra-
tory front-end contexts and used M-TCP between clients
and front-end hosts. The resulting system allows a client
to start a sequence of transactions with one front-end, then
migrate and continue the execution on other front-ends if
necessary. The system ensures that ACID semantics are
preserved and that the execution is deterministic across mi-
gration. The design and implementation are described in
detail in the extended version of the paper [9].

We plan to develop application-specific migration poli-
cies in the future. A software distribution of M-TCP will be
available soon. More details about M-TCP can be found at
our site: http://discolab.rutgers.edu/mtcp.
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