
Migratory TCP: Connection Migration for Service Continuity in the Internet �

Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode y

Department of Computer Science
Rutgers University, Piscataway, NJ 08854-8019, U. S. A.

fsultan, kiran, iyer, iftodeg@cs.rutgers.edu

1 Motivation

Today’s Internet services are commonly built over
TCP [5], the standard Internet connection-oriented reliable
transport protocol. The endpoint naming scheme of TCP,
based on network layer (IP) addresses, creates an implicit
binding between a service and the IP address of a server
providing it, throughout the lifetime of a client connection.
This makes a TCP client prone to all adverse conditions
that may affect the server endpoint or the internetwork in
between, after the connection is established: congestion or
failure in the network, server overloaded, failed or under
DoS attack. Studies that quantify the effects of network sta-
bility and route availability [4, 2] demonstrate that connec-
tivity failures can significantly impact Internet services. As
a result, although highly available servers can be deployed,
sustaining continuous service remains a problem.

Service continuity can be defined as the uninterrupted de-
livery of a service, from an end user’s perspective. The
TCP’s ability to support it is limited by its error recovery
scheme based on retransmissions to the same server end-
point of the connection (bound to a specific IP address). In
practice, the end user might be more interested in receiving
continuous service rather than statically binding to a given
server. As server identity becomes less important than the
service, it is desirable for a client to switch servers during a
service session, e.g., if a server cannot sustain the service.

We propose the cooperative service model, in which a
pool of similar servers, possibly geographically distributed
across the Internet, cooperate in sustaining a service by mi-
gration of client connections within the pool. The control
traffic between servers, needed to support migrated connec-
tions, can be carried either over the Internet or over a pri-
vate network. From client’s viewpoint, at any point during
the lifetime of its service session, the remote endpoint of its
connection may transparently migrate between servers.

�This work is supported in part by the National Science Foundation
under the ITR Grant Number ANI-0121416.

yCurrent address: Department of Computer Science, University of
Maryland, College Park, MD 20742.

2 Migratory TCP (M-TCP)

To enable the cooperative service model for service con-
tinuity we have designed Migratory TCP (M-TCP) [10, 8],
a reliable connection-oriented transport layer protocol that
supports efficient migration of live connections. The pro-
tocol enables stateful servers to seamlessly resume service
on migrated connections by transferring an application-
controlled amount of specific state. Although fine-grained
connection migration solutions have been proposed before
by exploiting features of application-level protocols like
HTTP [7, 11], to our best knowledge M-TCP is the first
solution that provides generic migration support through a
TCP-compatible transport protocol.

The M-TCP design assumes that the state of the server
application can be logically split among connections by
defining fine-grained state associated with each connection.

The M-TCP service interface can be best described as
a contract between the server application and the trans-
port protocol. According to this contract, the applica-
tion must execute the following actions: (i) export a state
snapshot at the old server, when it is consistent with data
sent/received on the connection; (ii) import the last state
snapshot at the new server after migration, to resume ser-
vice to client. In exchange, the protocol: (i) transfers the
per-connection state to the new server and (ii) synchronizes
the per-connection application state with the protocol state.

The migration mechanism of M-TCP (Fig. 1) ensures
that the new server resumes service while preserving the
exactly-once delivery semantics across migration, without
freezing or otherwise disrupting the traffic on the connec-
tion. The client application does not need to change.

A client contacts the service through a connection C id to
a preferred server S1. At connection setup, S1 supplies the
addresses of its cooperating servers, along with migration
certificates. The client-side M-TCP initiates migration of
Cid by opening a new connection to an alternate server S 2,
sending the migration certificate in a special option. (Fig.
1 (a)). To reincarnate Cid at S2, M-TCP transfers associ-
ated state (protocol state and the last snapshot) from S1.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

S1

C SYN + MIGR_REQ <Cid >

(a)

<Cid>

cooperative
 servers

(c)

S2

(b)(d)

Figure 1. Migration mechanism in M-TCP. Connec-
tion Cid, initially established by client C with server
S1, migrates to alternate server S2.

Depending on the implementation, the state transfer can be
either (i) lazy (on-demand), i.e., it occurs at the time migra-
tion is initiated, or (ii) eager, i.e., it occurs in anticipation of
migration, e.g., when a new snapshot is taken. Fig. 1 shows
the lazy transfer version: S2 sends a request (b) to S1 and
receives the state (c). If the migrating endpoint is reinstated
successfully at S2, then C and S2 complete the handshake,
which ends the migration (d).

Upon accepting the migrated connection, the server
application at S2 imports the state snapshot. It then re-
sumes service using the snapshot as a restart point, and per-
forms execution replay for a log-based recovery [3] sup-
ported by the protocol. The execution replay restores the
state of the service at the new server and synchronizes it
with the protocol state. To support the replay, M-TCP logs
and transfers from S1 data received and acknowledged since
the last snapshot. It also transfers unacknowledged data sent
before the last snapshot, for retransmission from S2.

3 Implementation and Applications

We have implemented M-TCP in FreeBSD as an ex-
tension to the TCP/IP stack, compatible and inter-operable
with the standard TCP [8]. M-TCP is decoupled from and
can work with various migration policies [10].

We identify two classes of services that can benefit from
M-TCP: (i) Applications that use long-lived connections,
e.g., multimedia streaming services, applications in the In-
ternet core [6], etc.; (ii) Critical applications from which
end users expect both correctness and good response time,
e.g., Internet banking, e-commerce, etc.

To demonstrate the potential of M-TCP in providing ser-
vice continuity, we have implemented and evaluated two
applications. The first one is a synthetic (generic) media

streaming server, for which we use M-TCP in conjunction
with a migration policy based on estimated inbound data
rate. Migration is triggered when the throughput perceived
on the client side falls under a fraction of the maximum
observed. We show that, for the same profile of perfor-
mance degradation at a server, M-TCP can sustain effective
throughput close to the average server profile by migrating
the connection between servers.

The second application is remote access over the Inter-
net to a transactional database server. We have augmented a
PostgreSQL [1] database back-end with support for migra-
tory front-end contexts and used M-TCP between clients
and front-end hosts. The resulting system allows a client
to start a sequence of transactions with one front-end, then
migrate and continue the execution on other front-ends if
necessary. The system ensures that ACID semantics are
preserved and that the execution is deterministic across mi-
gration. The design and implementation are described in
detail in the extended version of the paper [9].

We plan to develop application-specific migration poli-
cies in the future. A software distribution of M-TCP will be
available soon. More details about M-TCP can be found at
our site: http://discolab.rutgers.edu/mtcp.

References

[1] PostgreSQL. http://www.postgresql.org.
[2] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end

WAN Service Availability. In Proc. 3rd USENIX Symp. on
Internet Technologies and Systems (USITS), Mar. 2001.

[3] E. N. Elnozahy et al. A Survey of Rollback-Recovery Proto-
cols in Message-Passing Systems. Technical Report CMU-
CS-99-148, Carnegie Mellon University, June 1999.

[4] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study
of Internet Stability and Backbone Failures. In Proc. 29th
Symp. on Fault-Tolerant Computing (FTCS), June 1999.

[5] J. Postel. RFC 793: Transmission Control Protocol, Sept.
1981.

[6] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Proto-
col 4 (BGP-4), Mar. 1995.

[7] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-
Grained Failover Using Connection Migration. In Proc.
3rd USENIX Symp. on Internet Technologies and Systems
(USITS), Mar. 2001.

[8] K. Srinivasan. M-TCP: Transport Layer Support for Highly
Available Network Services. Technical Report DCS-TR-
459, Rutgers University, Oct. 2001.

[9] F. Sultan et al. Migratory TCP: Highly Available Internet
Services Using Connection Migration. Technical Report
DCS-TR-462, Rutgers University, Dec. 2001.

[10] F. Sultan, K. Srinivasan, and L. Iftode. Transport Layer
Support for Highly-Available Network Services. In Proc.
HotOS-VIII, May 2001. Extended version: Technical Re-
port DCS-TR-429, Rutgers University.

[11] C. Yang and M. Luo. Realizing Fault Resilience in Web-
Server Cluster. In Proc. SuperComputing 2000, Nov. 2000.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

